4.905t^2-8.22t+0.65=0

Simple and best practice solution for 4.905t^2-8.22t+0.65=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4.905t^2-8.22t+0.65=0 equation:



4.905t^2-8.22t+0.65=0
a = 4.905; b = -8.22; c = +0.65;
Δ = b2-4ac
Δ = -8.222-4·4.905·0.65
Δ = 54.8154
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8.22)-\sqrt{54.8154}}{2*4.905}=\frac{8.22-\sqrt{54.8154}}{9.81} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8.22)+\sqrt{54.8154}}{2*4.905}=\frac{8.22+\sqrt{54.8154}}{9.81} $

See similar equations:

| (9/y)+(7y/2y)=9y | | 50q^2-81=-9 | | -3(-5y+-7)=96 | | 4r+5=20 | | (4x-18)+78=180 | | 6+3+8k+k=0 | | Y=0.5x^2-3 | | 3u^2+14u+24=0 | | (4x+18)+78=180 | | T=300(d−15)2​+20 | | 4x/3=45 | | 8K+3+k+6=0 | | K+3+8k+6=0 | | (2x+31)+(4x-13)+x=180 | | 24+h÷4=10 | | (12x+2)+10x=90 | | (2x+311)+(4x-13)+x=180 | | 8k+3=k+6 | | .75x=-100 | | 2v+2=2 | | (K+3)=(8k+6) | | K+3=8k+6 | | 2x-5+4x-9=40 | | )k+6=8k+3 | | 1.05y+2.31-y-1.2=2y+4.71-3.9 | | -4(-4y+8)=16 | | 3x+10+6x-5+2x+5x+2x-5=360 | | 14u+0=-2u+3 | | 3/7(x-1)=-8 | | 3x=5x+34 | | x+(x+85)+(x+20)=180 | | 6x+132=290 |

Equations solver categories